Maclaurin’s inequalities for functions whose first derivatives are preinvex

نویسندگان

چکیده

In this paper, using a new identity, we study one of the famous Newton-Cotes three-point quadraturerules. More precisely Maclaurin’s quadrature rule, for which establish error estimate methodunder constraint that first derivatives belong to class preinvex functions. We also give someapplications special means as applications. believe studied inequality and resultsobtained in article will further inspire intrigued researchers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ostrowski type inequalities for functions whose derivatives are preinvex

In this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of Ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

ostrowski type inequalities for functions whose derivatives are preinvex

in this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

Some Perturbed Inequalities of Ostrowski Type for Functions whose n-th Derivatives Are Bounded

We firstly establish an identity for $n$ time differentiable mappings Then, a new inequality for $n$ times differentiable functions is deduced. Finally, some perturbed Ostrowski type inequalities for functions whose $n$th derivatives are of bounded variation are obtained.

متن کامل

New integral inequalities for $s$-preinvex functions

In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.

متن کامل

Some Hermite-hadamard Type Inequalities for Functions Whose Partial Derivatives in Absolute Value Are Preinvex on the Co-ordinates

In this paper we point out some inequalities of Hermite-Hadamard type for double integrals of functions whose partial derivatives in absolute value are preinvex on the co-ordinates on rectangle from the plane. Our established results generalize some recent results for functions whose partial derivatives in absolute value are convex on the co-ordinates on the rectangle from the plane.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of mathematical analysis and modeling

سال: 2022

ISSN: ['2709-5924']

DOI: https://doi.org/10.48185/jmam.v3i2.449